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Nonequilibrium statistical mechanics of drifting particles
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This paper describes a method for obtaining nonequilibrium one-particle energy distributions of fermions or
bosons. For the program to be carried out, particle transport should occur in the drifting mode in which the
average velocity is much lower than the instantaneous velocity. Under this condition, the spectral current
density has a drift-diffusion structure involving a mobility-diffusion relationship unrelated to statistics. When
a local-equilibrium energy distribution is used, the linear response theory is recovered. Next, the particle—
medium energy exchange is treated within a Fokker—Planck framework in order to obtain the nonequilibrium
energy distribution; a nonlinear framework is used to account for the quantum-statistical correlations. Explicit
formulas are obtained for homogeneous distributions at steady state. The rate of change of entropy is a simple
generalization of the second law of thermodynamics. The positivity of the total entropy production stems from
the positive definiteness of the diffusion tensors. Minimal entropy production is not necessarily achieved in the
stationary state.

PACS numbse(s): 05.70.Ln, 05.60-k, 05.10.Gg, 72.10.Bg

I. SCOPE OF THE PAPER changing energy with reservoirs, and a simple application to
degenerate electrons is given. Section IV discusses the be-
Nonequilibrium phenomena are often dealt with as perturhavior of entropy in the formalism, and Sec. V gathers the

bations of a local equilibrium state with a well-defined tem-conclusions.

perature. In previous papéts-3] we showed how to handle

particle transport in a medium without reference to equilib- Il. THE DRIFT AND DIFFUSION OF QUANTUM

rium or temperature. Specifically, the Lorentz model of elec- PARTICLES

trical conduction was addressed in the case of a high applied

field, as occurs in semiconductors or insulators. The

Boltzmann—Lorentz kinetic equation dealing with the The spectral particle densityE,r,t) (in cm 3eV™1) may

phase—space occupation was replaced by a much simplbe written as

equation of the Fokker—Planck type dealing with the particle

density in the energy-position manifold, in the limit of a n(E,r,t)=N(E)fo(E,r,1), (1)

vanishing drift-to-instantaneous velocity rati@he drift ve-

locity is obtained by averaging the particle motion over timeswhere N(E) is the density of one-particle states per unit

larger than the velocity—correlation timeThe analytical —energy per unit volume of material, arfg is the energy

proof for the replacement was further supported by Monteoccupation function at locationat timet. The particle den-

Carlo evidence. Here we want to bring out the generality osity n(r,t) (in cm™3) is the integral ofh over energy.

our approach which may be envisioned as a generalization of The spectral current density (in cm ?s *eV ™) is ob-

equilibrium statistical mechanics. The particles considered stained from the current densify(in cm 2s™%) by picking out

far were classical in the sense that they were not subjected tbe contribution from the energy sh¢k,E+dE], that is

the quantum constraints of indistinguishability, so that their

equilibrium energy distribution was given by the N e

Boltzmann—Gibbs statistics. Obviously it is desirable to ex- J_f

tend the approach to quantum particles whose equilibrium

_statistics i$ of th_e Fermi—Dirz_;\c or Bose—Einstein type. Thisyng the following expression was arrived[4:

is compatible with the semiclassical Boltzmann transport

equation(dealing with populations alonéf inelastic scatter- _ B P B

ing events are frequent enough to erase the coherence. The J'=qF;u"(E)n(E,r,t)— E[q F;D"(E)n(E,r,1)]

approach would enable physicists to address the transport of

fermions and bosons in the energy-position manifold, arbi- J

trarily far from equilibrium, in a mathematically simple way. o [DY(E)n(E,r,1)], (3)

Section Il shows that the expression for the spectral cur-

rent density derived previously holds for any kind of drifting here Einstein’s summation convention is understood

particle, and that the relations between current densities an : : . ’

generalized forces in irreversible thermodynamics are recoVd (r.t) is th_e fo_rce acting upon the particle, ar_1d energy-

ered as instantiations of this expression. Section llI explaingepenOlent diffusion and mobility tensors are defined as

how the Fokker—Planck framework yields the nonequilib- - -

rium energy occupation function of quantum particles ex- DI](E)E(UIQJ(F’))\J(D))E’ (48)

A. Definitions and classical result

JdE, )
0
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- d - scattering approximatignallowing one to consider that the
N(E)w! (E)=gg[N(E)D(E)]. (4b)  relaxation of the velocity is unaffected. Thus, the definition
of the mean free path is not modified nor is the connection
In Eq. (48 vy(p) is the group velocityE/dp of the particle  betweenf,(p,r.t) and fo(E,r.t), wherefore our Eq(3) for
of momentum or pseudomomentm‘nand)\(p) is the vector the Spectral current denSlty retains Its Valldlty for quantum

mean free path, which is the solution to an integral equatioparticles. _ . o
It is interesting to check this conclusion in the well-

, 3p’ known case of degenerate electrons near equilibrium. The
A(p)—7(p) AP)Wp Pz~ =Vg(P)7(P). (3 occupation function is the Fermi function

involving the scattering mechanism specified by the prob- fo(E)=[1+exp(E—Eg)/kT)] *=fep((E—Eg)/KT),
ability per unit imeW, ,,dp’/h* that the particle of mo- )
mentum p be scattered to the momentum-—space volum

Svhere the origin of energies is the bottom of the conduction
d3p’ aboutp’, andh is Planck’s constant. In Ed5) g g

band,Er is the Fermi energy, or the chemical potential, and

d3p’ T is the temperature. Integration dfover energy yield$ as
1/T(p):f f j Wp’p,? (6)  the sum of a drift term and a diffusion term, namely
_ . . J .

is the total scattering rate. Finally,.)e denotes the micro- j'=aFjun(r,t)— &J—[D”n(r,t)],
canonical average over the constant-energy surta@e
=E in momentum space, that is where

(e-LHLIoE R B (7) ! f I(E)n(E.r,)dE (103

.. = . n= n 1ry ’
= JITS(E(P)-E)d B e BER

Equation(4b), in which the mobility is the ratio of a velocity and similarly for D'in. Integrating Eq.(10a by parts and

to aforce, is a mobility-diffusion linkup of a geometric na- ysing Eq.(4b) [N(E)D'/ (E)|_o=0 andfy(+)=0],

ture generalizing the Nernst—Townsend relatidh
Equation(3) was derived under the assumption that the

departure f(p,r,t) of the momentum-space occupation

f(p,r,t) from its microcanonical average

w'in= fo+mN(E)D‘j(E)(—afO/aE)dE. (10b)

At a vanishing temperature; df ,/JE= 6(E—Eg), whence

fO(E!rlt)E(f)Ev (8)

be small. Thedrift property |f,|<f,, or state of near isot-

ropy, entails an averagelrift) velocity much lower than the Equation(11) expresses the well-known property that the
instantaneou&yroup velocity, and amounts to assuming that drift of degenerate electrons only depends on Fermi-surface
momentum or group velocity is relaxed at a faster rate thafroperties. The drift-current versus particle-density relation-
energy. In other words, the Boltzmann—Lorentz scatteringhip is not linear, since the Fermi level dependsidhrough
operator is the sum of a large energy-conserving contribution £

and of a small energy-relaxing term, and this view is the n:f FN(E)d E. (12)
starting point of a singular-perturbative expansjéhof the 0

Boltzmann transport equation. The alternative statement that, ) o -

scattering is more frequently elastic than inelastic has beeriMilarly, according to the definition of the diffusion tensor,
used in developing the so-called lucky-drift mo@@|7]. The &t Zero temperature

drift property does not require the absence of deeply inelastic

©'n=N(Eg)D(Eg). (12)

E
events, but it requires that they should occur infrequently D”n=f FN(E)DiJ’(E)dE, (13
[3,8]. 0
) so that the diffusion current density
B. Quantum particles
In deriving Eq.(3) particles were taken to be statistically _d@D'n) N(E;)D' (E;) JEE
independent, so that the—d3p’ traffic in momentum space ax! F FloxI”
contributesW, ,, f(p)d3p’/h® to the scattering integral. If
account is taken of the quantum nature of the particles, the _ i an
traffic is altered by an exclusion factor-1f (p’) in the case =—D"(Ep) axi” (14

of fermions, and by an enhancement facter f{p’) in the

case of bosons. Then the scattering operator is no longer shows that the fermions diffuse with the effective tensor
the Lorentz typdi.e., linear inf). However, Shockle}®] has D' (Eg). Here again, the diffusion-current versus particle-
shown(in the case of fermions, but the reasoning is equallydensity relationship is not linear. Vassiligl0] remarks that

valid for bosong that the overall traffic within an energy only the current-density versus particle-density relationship
shell is unchanged by the occupanioythe nearly elastic- makes sense in the degenerate case, and that the conventional
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mobility and diffusion tensors are concepts of little useful-(as is the case of high-field thermoelectric effects in semi-
ness, as can be seen in mesoscopic transport phydits conductorq 14]). Henceit is not restricted to the linear re-
The mobility-diffusion relation(4b) holds regardless of sponseit is a nonperturbative generalization of Onsager’s
space dimensionality, as a consequence of the basic theordiear response theory. The only basic requirement is that the
of exterior differentiation. In two dimensior¥(E) is inde- ~ fermion motion proceed by drift, that is, the momentum-—
pendent of E for nearly free electrons, and the zero- SPace occupatiof(p,r,t) departs little from the energy-shell

temperature conductivity tenserderived from Eq/(11) is averagefo(E,r,t). o .
If the energy distribution is not a local-equilibrium one, it

a1=g?ND/l(Ep), (15) should be determined from the particle—medium energy ex-
change, and this calculation is tackled in Sec. Ill. We shall
a result sometimes calldd 1] “the Einstein relation in two also indicate how to handle nonstationary effects occurring

dimensional metal physics.” over time scales shorter thamg .
In summary, the usual properties of degenerate fermions
are contained in Eq(3), which is easy to handle at finite D. Boson transport

temperatures by using Sommerfeld's expansion. Section IlC - oy previous examples dealt with fermions. What can we
shows that thermoelectric or thermodiffusive transport ProPsay about the transport of bosons? We do not know of

erties are obtained as well. charged bosons capable of undergoing drift under an electric
force (Cooper pairs in superconductors undergmherent
C. Linear and nonlinear responses transport, better named propagation, for which this frame-
In a solid it may often be assumed that the local occupaWork is inappropriate However, elementary excitations in
tion function of the electrons is thermal, namely superconductors do respond to the gradient of a potgntlgl
energy, and the approach based on the Boltzmann kinetic
fo(E,r,t)=fep((E—Eg(r,t)/kT(r,1)), (16)  equation[15] may conveniently be replaced by a Fokker—
Planck treatment.
whereEg(r,t) andT(r,t) are, respectively, the local chemi-  In the absence of a force, diffusion phenomena are

cal potential and temperature. Frahit is easy to obtain the present, to which the Fokker—Planck description in the
particle-number current density, E®), and the energy cur- energy-position manifold is ideally suited, just like in neu-

rent densities tronics. Photons in vacuum travel ballistically, so that diffu-
sion is meaningless. However, electromagnetic radiation in a
+ o + . . .
_— _— random medium is known to lose its coherence and the no-
JE_f BJAE,  je= fo £JdE, (17 tion of a “random walk of photons” is pertinerftL6,17.

Similar diffusion-related concepts emerge in multiple strong
where£=E+qV includes the potential energy of the force scattering of acoustic wave@honon$ [18]. Because our
gF=—4d(qV)/dr. The calculation of andj, from Eq. (3) approach is spectral and local, it has a much broader com-
yields pass than the extant ones, for instance if the temperature of

the medium is inhomogeneous. Finally, consider hot
i phonons, the statistics of which usually call for the Boltz-
+ LOl&J’ kT’ (183 mann equation: that equation may be replaced by a Fokker—
Planck approach, e.g., when electron and phonon distribu-
P ) N tions are coupled.
jt= L'fo&—xf(ﬁ) L (ﬁ-) (18b) As we shall show in Sec. Ill, the evolution of the particle
density is governed by an equation expressing local conser-

wherefi=E+qV is the electrochemical potential, and ~ Vation in the energy-position manifolénd possibly nonlo-
cal in energy if some deeply inelastic scattering is présent

. e - . [E—Eg(r,t) Since the number of bosons is not always conserved, the
L= fo EYIN(E)D(E)| —frp KT equation has to be generalized, e.g.,
(180 on 9 n(Er
These are the equations describing thermoelectric phenom- gt ox®  Tapd B’

ena usually derived from kinetic theory and simplifying as-\harex=E. 3° is the component along the® axis, and

sumptions, orexceptingL ;) from linear irreversible ther- 1;. i the absorption rate of bosons of enefggt location
modynamics. The equations of thermodiffusion may be 5t timet (in the case of first-order kineticsThe present
obtained similarly. The advantages of the present derivatiog s mework is general and flexible enough to support a vari-

are many:(i) it is mathematically straightforward as only ety of modifications and additions needed to handle special
simple integrals over energy are involve@;, it does not ;i ,ations.

require the relaxation-time approximation or the cubic sym-

metry[12,13}; (iii) time-varyingT andE are allowed up to Ill. NONEQUILIBRIUM QUANTUM STATISTICS
a maximum frequency 1427, where 7 is the energy-
relaxation time. The Fokker—Planck formalism in the
energy-position manifold can also be used if the local energy The occupation of the one-particle quantum states is con-
distribution significantly departs from thermal equilibrium trolled by the exchange of energy with the surrounding me-

A. Energy exchange with the medium
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dium. Until Sec. Ill C the exchange is assumed to take place 9
in the form of small energy jumps, and large energy jumps Je=Wn(E)n——=[Dn(E)n]. (23
will be subsumed in a second stage. Owing to the central-

limit theorem[19], the evolution off ; over times longer than Th I ineVslem ). obtained by i . f
the collision time only involves the rates of the mean and the eoveralifiow (inevs cm ), Obtaine _ylnltegranor) 0
variance of the energy change. The former rate, or drift co=].Ed E, only |n.vol\./es the dr'.ft term. Thg derivative, or Q|ffu-
efficient, is denoted bW,,(E), and the latter, or twice the 5|on_ltern_1é is involved In t_hed_etalled exchang_e (in

diffusion coefficient, by D(E). Let 5E, ,» denote the en- eV's “cm ° per e\). The drift-diffusion current density, Eq.

ergy change of a particle scattered from the state of momen(—23)' de_s_cribe_s the_ exchange over imes Ion_ge_r than the typi-
tum p to the state of momenturp’. We begin with the cal collision time, in order that the central-limit theorem be

diffusion coefficient. The drift property allows us to write it applicable. As a result of the quantum-statistical correlation

as a microcanonical average of the particlesJg is no_nlmear inn or fo. _
In the case of classical particles, the capacity of the me-

D(E)=Dn(p)e, dium to thermalize the pa}rticle§ at the temperafliie ex-
pressed by aV,,—D,, relationship

where
d’p’ N(E)Win(E) = i [N(E)D(E)] ! [N(E)D,(E)]
2Dm(p)=f f f (B p ) Wop—5— [ 12 o(E')]. mE)= GE m(E) ]~ LNCE) Dnl
24
In Eq. (19 we have accounted for the enhancem@miper ~meaning that the detailed exchange/g=Wy(E)n
sign/exclusion(lower sign factor of the final statéther,t  —d/JdE[Dn(E)n] vanishes for the equilibriumn(E)
dependence is not written expliciilySince «N(E)exp(—E/KT). Assuming the linkup, Eq24), between
the classical energy-exchange coefficients, what relation en-
f(EV~f-(E)+ SE dfo sues between the quantum coefficients? The question is
o(E")~To(E) OE readily answered using Eq&0) and(22), to give

an error of third order in the inelasticigE ensues if we take 9 1
N(E)Wn(E)= Z=[N(E)Dim(E)] = {F[N(E)Dim(E)]

Dm(E)=[1=fo(E)1DPm(E), (20)
where D,(E) denotes the classical diffusion coefficient. i(ﬁ)w (25)
Next, the drift coefficienWW,,(E) is the microcanonical av- JE | 1xfo(E)
erage of
e If the spectral energy flow is written in terms fyf instead of
P '
Wm(p):f f f 5Ep,p’Wp,p’?[lif0(E )], &
29 Je=—N(E)D(E) o, 1 (m"”
while for classical particles one would write : MIKT  1x14(E) | JE
d°p’ - foE)[1+fo(E)] [ dfo
Wm(p)zf f f S pr W pr =3~ (21b) = N(E)Dm(E)[ T gl 20
Retaining terms up to second orderdk, we get whence it is apparent thalz=0 if and only if f, is the
p equilibrium occupancy,
0
Wm(E):[lifO(E)]Wm(E)iZ(E)Dm(E)- (22)
fo(E)e
Three remarks are in order. First, in keeping with the 0 exp(E/kT)+1
Fokker—Planck methodology we have writtlacal expres-
sions for the drift and diffusion coefficients, at enerBy To conclude this subsection, we recall that not all inter-

Second, while the classical coefficients are independent ddctions have the ability to thermalize the particle, so that

the energy—space occupation, the quantum ones do depeRds. (25 and (26) are not universally valid. A conduction

on fy. Third, while the inelasticity is absent in tip@sition-  electron in a solid can reach a thermal energy distribution

space drift and diffusion coefficients dealt with in Sec. Il B, through interaction with zone-center acoustic phonj@,

it is conveyed in theenergy-space coefficients, and it is in but not with optical phonon$21] (unless[2] their energy is

the latter that the Fermi or Bose nature of the particle plays @finitesimal with respect t&T). When energy exchange is

role. mediated by finite quanta, nonequilibrium statistical proper-
The instantaneous energy flow from the medium to thdies such as transport cannot be described within irreversible

particles is embodied in the spectral energy-current densitthermodynamic$22]. However, the Fokker—Planck frame-

2] work handles both cases, either separdt2®} or jointly [3].
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where the integration constafivith respect toE, but not

T necessarily ta, t) Eq is the condensation levef {— + )

for bosons and the demarcation leV&}(Ey) = 1/2] for fer-
mions (“quasi-Fermi level”). It is seen that, unledd,; and

D, are proportional functions d, the particle does not have

a well-defined temperature. If an energy-dependent effective
temperaturel (E’) is defined as a local weighted harmonic
mean

W, (eV/s) D 1(eV2 /8)

1 1 D,(E') 1 D,(E')

T(E')  T1Dy(E)+D,(E) T, Dy(E)+Dy(E))’
(29

Particle

whereD/D,=D, /D, is independent of,, then

1
~ expJEdE'KT(E' ) F1

fo(E) (30

Generalization to thermal contact with more than two reser-
T voirs is straightforward.

2 If system No. 2 is a force field, the energy-exchange co-
efficients arg2,4]

FIG. 1. The particle exchanges energy with two reservoirs, at - -

temperature§’; and T,. Each exchange is specified by means of ~ Wg(E)=qF;qF;u"(E), Dg(E)=qFqF;D"(E),
the average energy input per unit tir(@ift coefficientW) and the
energy half-variance per unit timgliffusion coefficientD). Posi-  and the field temperature should be considered infinite. In
tion dependence is not considered in this diagram. Eq. (26) D (E)—Dr(E)=Dg(E) vyields the field-particle
energy flow

B. Detailed energy balance and nonequilibrium occupancy

Suppose that the particl.e is in gontact with two systems; Je=—N(E)D¢(E)
then the particle’s energy inflodg is the sum of two cur-
rents having the structure, EQR3), Jg=J,+J, (Fig. 1). . N ) ) )
Energy balance at steady state means a vanishingt is a It is positive wherefq is a de.cregsm.g function d&. The
detailed energy balance equation, in contrast to the fre-Steady-state occupation function is given by Egf), where
qguently used ‘averageenergy balance equation,”

af
E)' (31)

11 D(E)
W, (E)+W,(E)=0, T(E') TD,(E)+Dg(E')"

(32

meaningJe|4ix=0, that is, the fluctuating part of the ex- As a simple example, consider nearly free electrons isotropi-
change is waived to yield a single value Bfthat serves as cally exchanging acoustic phonons with the lattice at a rate

an estimate ofE). 1/7. It can be shown thdi2]
In a nonsteady statdg# 0 and the evolution of is gov- . . .
erned by D(E)=3v%E)7d", (333
2
an (9\]E 2mUSE
=, TR D (E)= , 33b
P 27 m(E)=—— (33b)

and the steady state is reached after the largest energyheremis the effective mqsggz(E)ng/m, andus is the

relaxation time of the two or more reservoirs. Speed of sound. If the collision timeis taken to be inde-
If the two systems have well-defined temperatufgsnd ~ Pendent of E_(instead of the mean free pathr), y

T,, and if both energy exchanges are of the thermalizing= Pr(E)/Pm(E)=3(qF7/muy)* is independent of energy,

type, the occupation function at steady state is easily oband

tained from Eq.(26)

—=exp — ————=|, c
fo(E) p[ IE{ 1 D,(E") 1-fo (y+1KT
T = X - LT ! !
1= 1o(E) Eol KT1 D1(E")+Do(E") where E, is an integration constant. Thus a Fermi—Dirac
1 D,(E) function with a higher, field-dependent temperaturg (

L , . N .
KT, D,(E') + D,(E) dE ] (28 +1)T arises as a generalization of the result of classical

kinetic theory[10].
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C. Miscellaneous remarks

S{fo}=—JO “[fo(E)in o E)

In the inhomogeneous case whardepends om, nis the

solution to the full Fokker—Planck equatidh]
F[1xfo(E)]In[1=fo(E)]}N(E)dE. (36

an g 9J

FrTauw Y (34 Its time derivative is easily calculated to be
whereJg is the spectral energy-current density considered so s J*“’ 0 fo(E) (0_%) N(E)dE. 37
far, andJ' is the spectral current density E@). In general, Jt 0 1xfo(E) | ot

the energy and position dependences are coupled. For in-

stance, in a Gaussian packet of classical particles traveling ifPplying the Fokker—Planck equation in the homogeneous

a uniform field, the energy distribution is “hotter” on the case Eq(27), and integrating by parts, one obtains

leading edgdg22] (although negligibly so in the ohmic re-

gime). For smoothly varying densitie®(r,t), a perturbative (9_8: } M—‘]E(E)dE

expansion [22,23  involving  the  derivatives gt klo TeE) ’

(8°nlax'ax)...)p=0 may be used to obtaify(E,r,t). o o _
On|y near]y elastic partic]e_medium interactio(i&_, where the noneqUIIIbrlum distribution function has been pa-

small energy jumpshave been addressed so far, but deeplyametrized by means of the effective temperafie. (30)].

inelastic interactions can be subsunigfby augmenting Eq.  The spectral energy inflow divided by tiedependent ef-

(34) with finite-difference or energy-integral terms in which fective temperature generalizes the expressiQiT from

the quantum nature of the statistics should be taken into ache Second law of thermodynamics. If the system is colder

count. For instance, if the particles are lit by a monochrothan the surroundingJz(E)dE generally will be positive

matic radiation, they will absorb and emit light quait@ at and increase the system’s entropy unless the effective-

rates 1f,(E) and 1f(E) (linked by the Einstein relation temperature functiof.(E) favors energy ranges where the

involving the light intensity, and the additional terms at the inflow is negative.

right-hand side of Eq(34) are

(38)

B. Inh t

NE)[1=fo(E-AQ)] | n(E+AQ)[1=f(E)] oMOgEneons system
7o(E) ) ; If the system is not homogeneous, the time derivation, Eq.
€ € (37), involves the divergence of the four-current

N(E)[1*fo(E+AQ)]  n(E-AQ)[1*Fo(E)] 55 [re  fy(E) [ade 4]
+ : (39 o m—2—[ZEL T dE. (39
7a(E) T(E—1Q) it Jo "M1xfoE) | GE " ax)E
wherg ther, t dependences are allowed although not wrlttenhc x°=E denotes the energy coordinate and Greek indices
explicitly. i . i
run from O to 3, integration by parts gives
IV. ENTROPY S +oo d fo
—:—f J%—In —)dE
A. Homogeneous system ot 0 X 1+f,
Neither in our discussion of transport in position spéne g [+= fo
Sec. I) nor in our determination of nonequilibrium statistics + Wj J! In( T )dE. (40
0 — 10

(in Sec. Il) has entropy been introduced. Entropy is conju-
gate to temperature, whidh generalis not defined far from The physical meaning of the last term is apparent if we cal-
equilibrium, meaning that the occupancy is not of theculate the entropy current density
Fermi—Dirac or Bose-Einstein type. In some problems, '
however, the notion of temperature can be rescued. For ex- d3p
ample, thermoelectric phenomena in metals are nonequilib- j5=f f fS{f(p)}vg(p)F,
rium processes for which there exists a local equilibrium
giving rise to a locally defined(r,t). Another example is i, the same way ai[1]. To first order inf, /fo,
met when interparticle energy exchange overwhelms that
with the surrounding: an assembly of degenerate electrons —S{f(p)}=Ffo(E)Info(E)F[1=fo(E)]IN[1=fo(E)]
may thus have a well-defined temperature distinct from that f(E)

o

(41)

of the lattice[24]. it |

In contradistinction, our approach deals with energy ex- 1(p)in 1+fy(E)
change arising from occupational changédseat”) with no
reference to temperature, in the form of a spectral density oo that
energy inflowJg . It is interesting to use the general defini-
tion of entropy and examine its behavior in the present
framework. Transposing the momentum-space definition in-
volving f(p) to one involvingf,(E) owing to the drift prop-
erty, the entropy per unit volume is and Eq.(40) reads

(42

. te fo
js(r,t)z—fo In(li—fo)J(E,r,t)dE, (43
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To calculate the integrand, we rewrite H8) as
J'=—N(E)D'(E) ﬂ9+ F-ﬁ—fo (45)
B oxi A0 )

and introduce D'°(E)=D%(E)=qF;D'/(E) and D°(E)
=qF;qF;D"(E) [1]. Given that)’=qF-J+J(E), one ob-
tains

17 _— T N(E)dE (9f0 (71:0
E“"V‘S‘fo fo(E)[ 1 fo(E)] X axP
v= 3 (E)E  f,
_fo Fo(E) 1= fo(E)] X0 (48

The last term involves the exchange of energy with the me-

dium, of which the rate of change of entropy

ISm [+ In(E)IE
e ‘fo kT (47

should also be taken into account, whence

ISm

as .
— +divj s+

at s (4839
S:fo fo(E)[lifo(E)]{D B) ox= axP
gfy fo(1xf)]2
+Dy(E) a_xg+ %} } (48b)
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(44), and other terms i$ will arise. If energy exchange with
the medium isot of the thermalizing type, the second term

in Sis

JO “fo(E)[ 1% fo(E)IN(E) Dy E)IE

1 af0+ 1

NFo(1=ty) O kT
" 1 af0+alnNDm W
fo(1xfg) ox° JE Dyl

and the positivity is not obvious. In the case of hot electrons
emitting hard phonons of enerdgyw, the characteristic en-
ergy Eyy, of the distribution[2] is large, and

1 of, 1

is negligibly negative compared tokll and — (W, /Dyy)
~1/hw. Consequentlys>0.

C. Minimal entropy production

It is usually contended that, not far from equilibrium, the
stationary state coincides with the state of minimal entropy
production. This can be straightforwardly checked within the
present formalism. Take a homogeneous system interacting
with a force field and an energy reservoir, so that the energy
distribution is independent of position. Stationarity is at-
tained if Jg+J,,=0, corresponding to the minimum of

afo\? afg  fo(l+fg)]?
00, —
DX(E)| —5 ) +Dn(E)| o0+ — 7

The rate of entropy creatiof is positive as expected from With respect to variations of the energy gradietiy/ox°.
thermodynamics. In this framework it stems from the posi-This minimizes the bracketed term in E@s8b), but notS

tivity of diffusion tensors D*? and scalaD ;). The second
term in S vanishes if and only if, is the equilibrium occu-

itself with respect to all distribution$,. For definiteness,
consider again nearly free electrons isotropically exchanging

S'is the drift-diffusion contribution to entropy creation. If the

forceqF is switched off, only the spatial componentsif?
and grad f, contribute, meaning thaliffusion increasesS
until the occupation is uniform in spacPrift in the force
field involves the energetic components @*? and

momentum. The diffusion coefficients are given by Egs.
(333—(33b), and the stationary distribution given by Eg.
(330 is foxexp(—E/KkTy), whereT,=(y+1)T, in the non-
degenerate limit. Now if we seek for a Gibbs-like distribu-
tion fo=exp(—(E—E)/KT) minimizing S under the condi-

ot 19x°. If spatial uniformity is reached, and if the field is tion that the total number of fermions per unit volumere

so weak thatf, nears the equilibrium occupancyf,/JE

~—fo(l=fy)/kT~—S(E—Eg) for degenerate fermions,

and

S=N(Ep)qFiqF;D'l (Ep)/KT=qF-j/KT, (49)

conserved, namely
+
f N(E)fo(E)dE=n, (50
0

we find T’ = (y+ 1)¥?T instead ofT,. Therefore there exist

according to Sec. Il A. In plain language, entropy is createdtates of lesser entropy production than the steady state. The
owing to work in the electric force being converted to heat.states are arbitrarily close to equilibrium @s+0 for a van-

Finally, the absence of a field contributioad/dt) stems
from the entropiless nature of a force figi].

ishing applied force. The example shows that the connection
between minimal entropy production and stationarity in-

If the particle exchanges energy with other systems, othevoked in near-equilibrium irreversible thermodynamics is

contributions to the four-current* should be added in Eq.

not of a general nature.
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V. CONCLUSIONS interacting with the surrounding medium. The functions de-
. . . pend on the Fermi or Bose nature of the particle. In the case
T_hls.paper has setup a framgwork for d_ea!mg with NONyhere the coupling with the medium is able to thermalize the
equilibrium one-particle distributions. Specifying nonequi- yaicle, analytical expressions are obtained for the homoge-
librium statistics in terms of aenergydistribution function neous, steady-state nonequilibrium occupancy, and a first-
is possible only if the transport processes involved occur byyger ordinary differential equation has to be solved in the
drift, that is, the phase—space occupation function is almosime-dependent case. A spatio-temporally varying distribu-
the same over a given energy shell. Then, given the energyon is the solution to &possibly augmentéd-okker—Planck
distribution, a general formula for the spectral particle-equation inE-r space.
current density exists regardless of the quantum nature of the The rate of change of entropy associated with energy ex-
drifting particle. It is the sum of a drift term and a diffusion change with the surrounding is given by a generalization of
term in the energy-position manifold. If the energy distribu-the second law of thermodynamics. If the exchange is of the
tion is a local-equilibrium one, the linear response theory ighermalizing type, the total entropy production is a positive-
recovered. In the opposite case, the energy distribution cadefinite quadratic form irgrad fy and 9f,/JE. However,
be determined from two functions embodying the mean andhe distribution minimizing entropy production is not, in gen-
variance of the instantaneous energy change of the partickeral, the steady-state one.

[1] E. Bringuier, Phys. Rev. B7, 2280(1998. Nonequilibrium and Disorder Vol. 2Viley-Interscience, New
[2] E. Bringuier, Am. J. Phys66, 995 (1998 [where Eq.(24b) York, 1973, Chap. 6.
should be corrected intDph(E)=%(hw)z(v(E)/)\), \ being  [14] Esther M. Conwell High-Field Transport in Semiconductors
the mean free path at the temperature of intgrest (Academic, New York, 1967
[3] E. Bringuier, J. Appl. Phys36, 6847(1999. [15] E. M. Lifshitz and L. P. PitaevskiiPhysical KineticsPerga-
[4] E. Bringuier, Philos. Mag. B7, 959 (1998. mon, Oxford, 198}, Chap. 11.
[5] P. Degond and C. Schmeiser, Transp. Theory Stat. Pt8/s. [16] A. Ishimaru, Wave Propagation and Scattering in Random
31(1999. Media (Academic, New York, 1978 Vol. 2.
[6] B. K. Ridley, J. Phys. 16, 3373(1983. [17] Zhao-Qing Zhang and Ping Sheng,Snattering and Localiza-
[7] M. G. Burt, J. Phys. (18, L477 (1985. tion of Classical Waves in Random Mediedited by Ping
[8] B. K. Ridley, Semicond. Sci. Technd, 116 (1987. Sheng(World Scientific, Singapore, 1990pp. 137-177.
[9] W. Shockley,Electrons and Holes in Semiconductaiéan [18] J. H. Page, H. P. Schriemer, A. E. Bailey, and D. A. Weitz,
Nostrand, New York, 1950 p. 256. Phys. Rev. B52, 3106(1995.
[10] A. Vassiliev,Introduction ala Physique StatistiquéMir, Mos- [19] Gregory Ryskin, Phys. Rev. &6, 5123(1997.
cow, 1985; original Russian edition, 198Chap. 12. [20] A. Majorana, Transp. Theory Stat. Phy4), 261 (1991).
[11] S. Datta,Electronic Transport in Mesoscopic Systef@am-  [21] F. Fuchs and F. Poupaud, Transp. Theory Stat. P28/5529
bridge University Press, Cambridge, 1996hap. 1. (1999.

[12] J. Tavernier and D. Caleckintroduction aux Pheomaes de  [22] E. Bringuier, Phys. Rev. B8, 4543(1998.

Transport Linaires dans les Semi-ConducteutMasson, [23] E. Bringuier, Philos. Mag. B9, 1659(1999.

Paris, 1970 [24] B. K. Ridley, Quantum Processes in Semiconduct@sd ed.
[13] W. Jones and N. H. MarchTheoretical Solid-State Physics (Clarendon, Oxford, 1988 Chap. 8.



