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Nonequilibrium statistical mechanics of drifting particles
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~Received 30 December 1999!

This paper describes a method for obtaining nonequilibrium one-particle energy distributions of fermions or
bosons. For the program to be carried out, particle transport should occur in the drifting mode in which the
average velocity is much lower than the instantaneous velocity. Under this condition, the spectral current
density has a drift-diffusion structure involving a mobility-diffusion relationship unrelated to statistics. When
a local-equilibrium energy distribution is used, the linear response theory is recovered. Next, the particle–
medium energy exchange is treated within a Fokker–Planck framework in order to obtain the nonequilibrium
energy distribution; a nonlinear framework is used to account for the quantum-statistical correlations. Explicit
formulas are obtained for homogeneous distributions at steady state. The rate of change of entropy is a simple
generalization of the second law of thermodynamics. The positivity of the total entropy production stems from
the positive definiteness of the diffusion tensors. Minimal entropy production is not necessarily achieved in the
stationary state.

PACS number~s!: 05.70.Ln, 05.60.2k, 05.10.Gg, 72.10.Bg
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I. SCOPE OF THE PAPER

Nonequilibrium phenomena are often dealt with as per
bations of a local equilibrium state with a well-defined te
perature. In previous papers@1–3# we showed how to handle
particle transport in a medium without reference to equil
rium or temperature. Specifically, the Lorentz model of el
trical conduction was addressed in the case of a high app
field, as occurs in semiconductors or insulators. T
Boltzmann–Lorentz kinetic equation dealing with th
phase–space occupation was replaced by a much sim
equation of the Fokker–Planck type dealing with the parti
density in the energy-position manifold, in the limit of
vanishing drift-to-instantaneous velocity ratio.~The drift ve-
locity is obtained by averaging the particle motion over tim
larger than the velocity–correlation time.! The analytical
proof for the replacement was further supported by Mo
Carlo evidence. Here we want to bring out the generality
our approach which may be envisioned as a generalizatio
equilibrium statistical mechanics. The particles considered
far were classical in the sense that they were not subjecte
the quantum constraints of indistinguishability, so that th
equilibrium energy distribution was given by th
Boltzmann–Gibbs statistics. Obviously it is desirable to e
tend the approach to quantum particles whose equilibr
statistics is of the Fermi–Dirac or Bose–Einstein type. T
is compatible with the semiclassical Boltzmann transp
equation~dealing with populations alone! if inelastic scatter-
ing events are frequent enough to erase the coherence
approach would enable physicists to address the transpo
fermions and bosons in the energy-position manifold, a
trarily far from equilibrium, in a mathematically simple wa

Section II shows that the expression for the spectral c
rent density derived previously holds for any kind of driftin
particle, and that the relations between current densities
generalized forces in irreversible thermodynamics are rec
ered as instantiations of this expression. Section III expla
how the Fokker–Planck framework yields the nonequil
rium energy occupation function of quantum particles e
PRE 611063-651X/2000/61~6!/6351~8!/$15.00
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changing energy with reservoirs, and a simple application
degenerate electrons is given. Section IV discusses the
havior of entropy in the formalism, and Sec. V gathers
conclusions.

II. THE DRIFT AND DIFFUSION OF QUANTUM
PARTICLES

A. Definitions and classical result

The spectral particle densityIn(E,r ,t) ~in cm23 eV21! may
be written as

nI ~E,r ,t !5N~E! f 0~E,r ,t !, ~1!

where N(E) is the density of one-particle states per u
energy per unit volume of material, andf 0 is the energy
occupation function at locationr at time t. The particle den-
sity n(r ,t) ~in cm23! is the integral ofn over energy.

The spectral current densityJ ~in cm22 s21 eV21! is ob-
tained from the current densityj ~in cm22 s21! by picking out
the contribution from the energy shell@E,E1dE#, that is

j5E
0

1`

J dE, ~2!

and the following expression was arrived at@1#:

Ji5qFjm
i j ~E!nI ~E,r ,t !2

]

]E
@qFjD

i j ~E!nI ~E,r ,t !#

2
]

]xj @Di j ~E!nI ~E,r ,t !#, ~3!

where Einstein’s summation convention is understo
qF(r ,t) is the force acting upon the particle, and energ
dependent diffusion and mobility tensors are defined as

Di j ~E![„vg
i ~p!l j~p!…E, ~4a!
6351 ©2000 The American Physical Society
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6352 PRE 61ERIC BRINGUIER
N~E!m i j ~E![
d

dE
@N~E!Di j ~E!#. ~4b!

In Eq. ~4a! vg(p) is the group velocity]E/]p of the particle
of momentum or pseudomomentump, andl(p) is the vector
mean free path, which is the solution to an integral equa

l~p!2t~p!E E E l~p8!Wp8,p
d3p8

h3 5vg~p!t~p!, ~5!

involving the scattering mechanism specified by the pr
ability per unit timeWp,p8d

3p8/h3 that the particle of mo-
mentum p be scattered to the momentum–space volu
d3p8 aboutp8, andh is Planck’s constant. In Eq.~5!

1/t~p!5E E E Wp,p8

d3p8

h3 ~6!

is the total scattering rate. Finally,(..)E denotes the micro-
canonical average over the constant-energy surfaceE(p)
5E in momentum space, that is

~ ..!E5
***~ ..!d~E~p!2E!d3p

***d~E~p!2E!d3p
. ~7!

Equation~4b!, in which the mobility is the ratio of a velocity
to a force, is a mobility-diffusion linkup of a geometric na
ture generalizing the Nernst–Townsend relation@4#.

Equation~3! was derived under the assumption that t
departure f 1(p,r,t) of the momentum–space occupatio
f (p,r,t) from its microcanonical average

f 0~E,r ,t ![~ f̄ !E , ~8!

be small. Thedrift property u f 1u! f 0 , or state of near isot-
ropy, entails an average~drift! velocity much lower than the
instantaneous~group! velocity, and amounts to assuming th
momentum or group velocity is relaxed at a faster rate t
energy. In other words, the Boltzmann–Lorentz scatter
operator is the sum of a large energy-conserving contribu
and of a small energy-relaxing term, and this view is t
starting point of a singular-perturbative expansion@5# of the
Boltzmann transport equation. The alternative statement
scattering is more frequently elastic than inelastic has b
used in developing the so-called lucky-drift model@6,7#. The
drift property does not require the absence of deeply inela
events, but it requires that they should occur infrequen
@3,8#.

B. Quantum particles

In deriving Eq.~3! particles were taken to be statistical
independent, so that thep→d3p8 traffic in momentum space
contributesWp,p8 f (p)d3p8/h3 to the scattering integral. I
account is taken of the quantum nature of the particles,
traffic is altered by an exclusion factor 12 f (p8) in the case
of fermions, and by an enhancement factor 11 f (p8) in the
case of bosons. Then the scattering operator is no longe
the Lorentz type~i.e., linear inf !. However, Shockley@9# has
shown~in the case of fermions, but the reasoning is equa
valid for bosons! that theoverall traffic within an energy
shell is unchanged by the occupancyin the nearly elastic-
n
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scattering approximation, allowing one to consider that th
relaxation of the velocity is unaffected. Thus, the definiti
of the mean free path is not modified nor is the connect
betweenf 1(p,r,t) and f 0(E,r ,t), wherefore our Eq.~3! for
the spectral current density retains its validity for quantu
particles.

It is interesting to check this conclusion in the we
known case of degenerate electrons near equilibrium.
occupation function is the Fermi function

f 0~E!5@11exp„~E2EF!/kT…#21[ f FD~~E2EF!/kT!,
~9!

where the origin of energies is the bottom of the conduct
band,EF is the Fermi energy, or the chemical potential, a
T is the temperature. Integration ofJ over energy yieldsj as
the sum of a drift term and a diffusion term, namely

j i5qFjm
i j n~r ,t !2

]

]xj @Di j n~r ,t !#,

where

m i j n5E
0

1`

m i j ~E!nI ~E,r ,t !dE, ~10a!

and similarly for Di j n. Integrating Eq.~10a! by parts and
using Eq.~4b! @N(E)Di j (E)uE5050 and f 0(1`)50#,

m i j n5E
0

1`

N~E!Di j ~E!~2] f 0 /]E!dE. ~10b!

At a vanishing temperature,2] f 0 /]E5d(E2EF), whence

m i j n5N~EF!Di j ~EF!. ~11!

Equation ~11! expresses the well-known property that t
drift of degenerate electrons only depends on Fermi-surf
properties. The drift-current versus particle-density relatio
ship is not linear, since the Fermi level depends onn through

n5E
0

EF
N~E!dE. ~12!

Similarly, according to the definition of the diffusion tenso
at zero temperature

Di j n5E
0

EF
N~E!Di j ~E!dE, ~13!

so that the diffusion current density

2
]~Di j n!

]xj 52N~EF!Di j ~EF!
]EF

]xj8
,

52Di j ~EF!
]n

]xj8
, ~14!

shows that the fermions diffuse with the effective tens
Di j (EF). Here again, the diffusion-current versus partic
density relationship is not linear. Vassiliev@10# remarks that
only the current-density versus particle-density relations
makes sense in the degenerate case, and that the conven
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PRE 61 6353NONEQUILIBRIUM STATISTICAL MECHANICS OF . . .
mobility and diffusion tensors are concepts of little usef
ness, as can be seen in mesoscopic transport physics@11#.

The mobility-diffusion relation~4b! holds regardless o
space dimensionality, as a consequence of the basic the
of exterior differentiation. In two dimensionsN(E) is inde-
pendent of E for nearly free electrons, and the zer
temperature conductivity tensors derived from Eq.~11! is

s i j 5q2NDi j ~EF!, ~15!

a result sometimes called@11# ‘‘the Einstein relation in two
dimensional metal physics.’’

In summary, the usual properties of degenerate fermi
are contained in Eq.~3!, which is easy to handle at finit
temperatures by using Sommerfeld’s expansion. Section
shows that thermoelectric or thermodiffusive transport pr
erties are obtained as well.

C. Linear and nonlinear responses

In a solid it may often be assumed that the local occu
tion function of the electrons is thermal, namely

f 0~E,r ,t !5 f FD„@E2EF~r ,t !#/kT~r ,t…!, ~16!

whereEF(r ,t) andT(r ,t) are, respectively, the local chem
cal potential and temperature. FromJ it is easy to obtain the
particle-number current density, Eq.~2!, and the energy cur
rent densities

j E5E
0

1`

EJ dE, j E5E
0

1`

EJ dE, ~17!

whereE5E1qV includes the potential energy of the forc
qF52](qV)/]r . The calculation ofj and jE from Eq. ~3!
yields

j i5L00
i j ]

]xj S 2m̃

kT D1L01
i j ]

]xj S 1

kTD , ~18a!

j E
j 5L10

i j ]

]xj S 2m̃

kT D1L11
i j ]

]xj S 1

kTD , ~18b!

wherem̃5EF1qV is the electrochemical potential, and

Lkl
i j 5E

0

1`

Ek1 lN~E!Di j ~E!F2 f FD8 S E2EF~r ,t !

kT~r ,t ! D GdE.

~18c!

These are the equations describing thermoelectric phen
ena usually derived from kinetic theory and simplifying a
sumptions, or~exceptingLkl

i j ) from linear irreversible ther-
modynamics. The equations of thermodiffusion may
obtained similarly. The advantages of the present deriva
are many:~i! it is mathematically straightforward as on
simple integrals over energy are involved;~ii ! it does not
require the relaxation-time approximation or the cubic sy
metry @12,13#; ~iii ! time-varyingT andEF are allowed up to
a maximum frequency 1/2ptE , where tE is the energy-
relaxation time. The Fokker–Planck formalism in th
energy-position manifold can also be used if the local ene
distribution significantly departs from thermal equilibriu
-
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~as is the case of high-field thermoelectric effects in se
conductors@14#!. Henceit is not restricted to the linear re-
sponse: it is a nonperturbative generalization of Onsage
linear response theory. The only basic requirement is that
fermion motion proceed by drift, that is, the momentum
space occupationf (p,r,t) departs little from the energy-she
averagef 0(E,r ,t).

If the energy distribution is not a local-equilibrium one,
should be determined from the particle–medium energy
change, and this calculation is tackled in Sec. III. We sh
also indicate how to handle nonstationary effects occurr
over time scales shorter thantE .

D. Boson transport

Our previous examples dealt with fermions. What can
say about the transport of bosons? We do not know
charged bosons capable of undergoing drift under an ele
force ~Cooper pairs in superconductors undergocoherent
transport, better named propagation, for which this fram
work is inappropriate!. However, elementary excitations i
superconductors do respond to the gradient of a poten
energy, and the approach based on the Boltzmann kin
equation@15# may conveniently be replaced by a Fokke
Planck treatment.

In the absence of a force, diffusion phenomena
present, to which the Fokker–Planck description in t
energy-position manifold is ideally suited, just like in ne
tronics. Photons in vacuum travel ballistically, so that diff
sion is meaningless. However, electromagnetic radiation
random medium is known to lose its coherence and the
tion of a ‘‘random walk of photons’’ is pertinent@16,17#.
Similar diffusion-related concepts emerge in multiple stro
scattering of acoustic waves~phonons! @18#. Because our
approach is spectral and local, it has a much broader c
pass than the extant ones, for instance if the temperatur
the medium is inhomogeneous. Finally, consider h
phonons, the statistics of which usually call for the Bolt
mann equation: that equation may be replaced by a Fokk
Planck approach, e.g., when electron and phonon distr
tions are coupled.

As we shall show in Sec. III, the evolution of the partic
density is governed by an equation expressing local con
vation in the energy-position manifold~and possibly nonlo-
cal in energy if some deeply inelastic scattering is prese!.
Since the number of bosons is not always conserved,
equation has to be generalized, e.g.,

]nI

]t
1

]Ja

]xa 52
nI ~E,r ,t !

tabs~E,r ,t !8

where x05E, J0 is the component along thex0 axis, and
1/tabs is the absorption rate of bosons of energyE at location
r at time t ~in the case of first-order kinetics!. The present
framework is general and flexible enough to support a v
ety of modifications and additions needed to handle spe
situations.

III. NONEQUILIBRIUM QUANTUM STATISTICS

A. Energy exchange with the medium

The occupation of the one-particle quantum states is c
trolled by the exchange of energy with the surrounding m
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6354 PRE 61ERIC BRINGUIER
dium. Until Sec. III C the exchange is assumed to take pl
in the form of small energy jumps, and large energy jum
will be subsumed in a second stage. Owing to the cent
limit theorem@19#, the evolution off 0 over times longer than
the collision time only involves the rates of the mean and
variance of the energy change. The former rate, or drift
efficient, is denoted byWm(E), and the latter, or twice the
diffusion coefficient, by 2Dm(E). Let dEp,p8 denote the en-
ergy change of a particle scattered from the state of mom
tum p to the state of momentump8. We begin with the
diffusion coefficient. The drift property allows us to write
as a microcanonical average

Dm~E!5„Dm~p!…E ,

where

2Dm~p!5E E E ~dEp,p8!
2Wp,p8

d3p8

h3 @16 f 0~E8!#.

~19!

In Eq. ~19! we have accounted for the enhancement~upper
sign!/exclusion~lower sign! factor of the final state~the r , t
dependence is not written explicitly!. Since

f 0~E8!' f 0~E!1dES ] f 0

]E D ,

an error of third order in the inelasticitydE ensues if we take

Dm~E!5@16 f 0~E!#Dm~E!, ~20!

where Dm(E) denotes the classical diffusion coefficien
Next, the drift coefficientWm(E) is the microcanonical av
erage of

Wm~p!5E E E dEp,p8Wp,p8

d3p8

h3 @16 f 0~E8!#,

~21a!

while for classical particles one would write

Wm~p!5E E E dEp,p8Wp,p8

d3p8

h3 . ~21b!

Retaining terms up to second order indE, we get

Wm~E!5@16 f 0~E!#Wm~E!62S ] f 0

]E DDm~E!. ~22!

Three remarks are in order. First, in keeping with t
Fokker–Planck methodology we have writtenlocal expres-
sions for the drift and diffusion coefficients, at energyE.
Second, while the classical coefficients are independen
the energy–space occupation, the quantum ones do de
on f 0 . Third, while the inelasticity is absent in theposition–
space drift and diffusion coefficients dealt with in Sec. II
it is conveyed in theenergy–space coefficients, and it is i
the latter that the Fermi or Bose nature of the particle play
role.

The instantaneous energy flow from the medium to
particles is embodied in the spectral energy-current den
@2#
e
s
l-

e
-

n-

of
nd

a

e
ty

JE5Wm~E!nI 2
]

]E
@Dm~E!nI #. ~23!

Theoverall flow ~in eV s21 cm23!, obtained by integration of
JEdE, only involves the drift term. The derivative, or diffu
sion term, is involved in thedetailed exchange ~in
eV s21 cm23 per eV!. The drift-diffusion current density, Eq
~23!, describes the exchange over times longer than the t
cal collision time, in order that the central-limit theorem b
applicable. As a result of the quantum-statistical correlat
of the particles,JE is nonlinear innI or f 0 .

In the case of classical particles, the capacity of the m
dium to thermalize the particles at the temperatureT is ex-
pressed by aWm–Dm relationship

N~E!Wm~E!5
]

]E
@N~E!Dm~E!#2

1

kT
@N~E!Dm~E!#

~24!

meaning that the detailed exchangeJE5Wm(E)nI
2]/]E@Dm(E)nI # vanishes for the equilibriumnI (E)
}N(E)exp(2E/kT). Assuming the linkup, Eq.~24!, between
the classical energy-exchange coefficients, what relation
sues between the quantum coefficients? The questio
readily answered using Eqs.~20! and ~22!, to give

N~E!Wm~E!5
]

]E
@N~E!Dm~E!#2

1

kT
@N~E!Dm~E!#

6S ] f 0

]E D N~E!Dm~E!

16 f 0~E!
. ~25!

If the spectral energy flow is written in terms off 0 instead of
nI ,

JE52N~E!Dm~E!F f 0

kT
1

1

16 f 0~E! S ] f 0

]E D G
52N~E!Dm~E!F f 0~E!@16 f 0~E!#

kT
1S ] f 0

]E D G , ~26!

whence it is apparent thatJE50 if and only if f 0 is the
equilibrium occupancy,

f 0~E!5
1

exp~E/kT!71
.

To conclude this subsection, we recall that not all int
actions have the ability to thermalize the particle, so t
Eqs. ~25! and ~26! are not universally valid. A conduction
electron in a solid can reach a thermal energy distribut
through interaction with zone-center acoustic phonons@20#,
but not with optical phonons@21# ~unless@2# their energy is
infinitesimal with respect tokT!. When energy exchange i
mediated by finite quanta, nonequilibrium statistical prop
ties such as transport cannot be described within irrevers
thermodynamics@22#. However, the Fokker–Planck frame
work handles both cases, either separately@22# or jointly @3#.
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B. Detailed energy balance and nonequilibrium occupancy

Suppose that the particle is in contact with two system
then the particle’s energy inflowJE is the sum of two cur-
rents having the structure, Eq.~23!, JE5J11J2 ~Fig. 1!.
Energy balance at steady state means a vanishingJE . It is a
detailed energy balance equation, in contrast to the f
quently used ‘‘averageenergy balance equation,’’

W1~E!1W2~E!50,

meaningJEudrift50, that is, the fluctuating part of the ex
change is waived to yield a single value ofE that serves as
an estimate of̂E&.

In a nonsteady state,JEÞ0 and the evolution ofnI is gov-
erned by

]nI

]t
1

]JE

]E
50, ~27!

and the steady state is reached after the largest ene
relaxation time of the two or more reservoirs.

If the two systems have well-defined temperaturesT1 and
T2 , and if both energy exchanges are of the thermaliz
type, the occupation function at steady state is easily
tained from Eq.~26!

f 0~E!

16 f 0~E!
5expH 2E

E0

E F 1

kT1

D1~E8!

D1~E8!1D2~E8!

1
1

kT2

D2~E8!

D1~E8!1D2~E8!GdE8J , ~28!

FIG. 1. The particle exchanges energy with two reservoirs
temperaturesT1 and T2 . Each exchange is specified by means
the average energy input per unit time~drift coefficientW! and the
energy half-variance per unit time~diffusion coefficientD!. Posi-
tion dependence is not considered in this diagram.
;

-

gy-

g
b-

where the integration constant~with respect toE, but not
necessarily tor , t! E0 is the condensation level (f 0→1`)
for bosons and the demarcation level@ f 0(E0)51/2# for fer-
mions ~‘‘quasi-Fermi level’’!. It is seen that, unlessD1 and
D2 are proportional functions ofE, the particle does not hav
a well-defined temperature. If an energy-dependent effec
temperatureTe(E8) is defined as a local weighted harmon
mean

1

Te~E8!
5

1

T1

D1~E8!

D1~E8!1D2~E8!
1

1

T2

D2~E8!

D1~E8!1D2~E8!
,

~29!

whereD1 /D25D1 /D2 is independent off 0 , then

f 0~E!5
1

exp~*E0

E dE8/kTe~E8!!71
. ~30!

Generalization to thermal contact with more than two res
voirs is straightforward.

If system No. 2 is a force field, the energy-exchange
efficients are@2,4#

WF~E!5qFiqFjm
i j ~E!, DF~E!5qFiqFjD

i j ~E!,

and the field temperature should be considered infinite
Eq. ~26! Dm(E)→DF(E)5DF(E) yields the field-particle
energy flow

JF52N~E!DF~E!S ] f 0

]E D . ~31!

It is positive wheref 0 is a decreasing function ofE. The
steady-state occupation function is given by Eq.~30!, where

1

Te~E8!
5

1

T

Dm~E8!

Dm~E8!1DF~E8!
. ~32!

As a simple example, consider nearly free electrons isotro
cally exchanging acoustic phonons with the lattice at a r
1/t. It can be shown that@2#

Di j ~E!5 1
3 v2~E!td i j , ~33a!

Dm~E!5
2mvs

2E

t
, ~33b!

wherem is the effective mass,v2(E)52E/m, andvs is the
speed of sound. If the collision timet is taken to be inde-
pendent of E ~instead of the mean free pathvt), g
[DF(E)/Dm(E)5 1

3 (qFt/mvs)
2 is independent of energy

and

f 0

12 f 0
5expS 2

E2E0

~g11!kTD , ~33c!

where E0 is an integration constant. Thus a Fermi–Dir
function with a higher, field-dependent temperatureg
11)T arises as a generalization of the result of class
kinetic theory@10#.

t
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6356 PRE 61ERIC BRINGUIER
C. Miscellaneous remarks

In the inhomogeneous case wherenI depends onr , nI is the
solution to the full Fokker–Planck equation@1#

]nI

]t
1

]JE

]E
1

]Ji

]xi 50, ~34!

whereJE is the spectral energy-current density considered
far, andJi is the spectral current density Eq.~3!. In general,
the energy and position dependences are coupled. Fo
stance, in a Gaussian packet of classical particles travelin
a uniform field, the energy distribution is ‘‘hotter’’ on th
leading edge@22# ~although negligibly so in the ohmic re
gime!. For smoothly varying densitiesn(r ,t), a perturbative
expansion @22,23# involving the derivatives
(]pn/]xi]xj ...)p>0 may be used to obtainf 0(E,r ,t).

Only nearly elastic particle–medium interactions~i.e.,
small energy jumps! have been addressed so far, but dee
inelastic interactions can be subsumed@3# by augmenting Eq.
~34! with finite-difference or energy-integral terms in whic
the quantum nature of the statistics should be taken into
count. For instance, if the particles are lit by a monoch
matic radiation, they will absorb and emit light quanta\V at
rates 1/ta(E) and 1/te(E) ~linked by the Einstein relation
involving the light intensity!, and the additional terms at th
right-hand side of Eq.~34! are

nI ~E!@16 f 0~E2\V!#

te~E!
1

nI ~E1\V!@16 f 0~E!#

te~E1\V!
,

nI ~E!@16 f 0~E1\V!#

ta~E!
1

nI ~E2\V!@16 f 0~E!#

ta~E2\V!
, ~35!

where ther , t dependences are allowed although not writ
explicitly.

IV. ENTROPY

A. Homogeneous system

Neither in our discussion of transport in position space~in
Sec. II! nor in our determination of nonequilibrium statistic
~in Sec. III! has entropy been introduced. Entropy is con
gate to temperature, whichin generalis not defined far from
equilibrium, meaning that the occupancy is not of t
Fermi–Dirac or Bose–Einstein type. In some problem
however, the notion of temperature can be rescued. For
ample, thermoelectric phenomena in metals are nonequ
rium processes for which there exists a local equilibriu
giving rise to a locally definedT(r ,t). Another example is
met when interparticle energy exchange overwhelms
with the surrounding: an assembly of degenerate elect
may thus have a well-defined temperature distinct from t
of the lattice@24#.

In contradistinction, our approach deals with energy
change arising from occupational changes~‘‘heat’’ ! with no
reference to temperature, in the form of a spectral densit
energy inflowJE . It is interesting to use the general defin
tion of entropy and examine its behavior in the pres
framework. Transposing the momentum-space definition
volving f (p) to one involvingf 0(E) owing to the drift prop-
erty, the entropy per unit volume is
o

in-
in
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t
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S$ f 0%52E
0

1`

$ f 0~E!ln f 0~E!

7@16 f 0~E!# ln@16 f 0~E!#%N~E!dE. ~36!

Its time derivative is easily calculated to be

]S
]t

52E
0

1`

ln
f 0~E!

16 f 0~E! S ] f 0

]t DN~E!dE. ~37!

Applying the Fokker–Planck equation in the homogeneo
case Eq.~27!, and integrating by parts, one obtains

]S
]t

5
1

k E0

1` JE~E!dE

Te~E!
, ~38!

where the nonequilibrium distribution function has been p
rametrized by means of the effective temperature@Eq. ~30!#.
The spectral energy inflow divided by theE-dependent ef-
fective temperature generalizes the expressiondQ̇/T from
the Second law of thermodynamics. If the system is col
than the surrounding,JE(E)dE generally will be positive
and increase the system’s entropy unless the effect
temperature functionTe(E) favors energy ranges where th
inflow is negative.

B. Inhomogeneous system

If the system is not homogeneous, the time derivation,
~37!, involves the divergence of the four-current

]S
]t

5E
0

1`

ln
f 0~E!

16 f 0~E! S ]JE

]E
1

]Ji

]xi DdE. ~39!

If x05E denotes the energy coordinate and Greek indi
run from 0 to 3, integration by parts gives

]S
]t

52E
0

1`

Ja
]

]xa lnS f 0

16 f 0
DdE

1
]

]xi E
0

1`

Ji lnS f 0

16 f 0
DdE. ~40!

The physical meaning of the last term is apparent if we c
culate the entropy current density,

jS5E E E S $ f ~p!%vg~p!
d3p

h3 , ~41!

in the same way asj @1#. To first order inf 1 / f 0 ,

2S$ f ~p!%5 f 0~E!ln f 0~E!7@16 f 0~E!# ln@16 f 0~E!#

1 f 1~p!lnS f 0~E!

16 f 0~E! D , ~42!

so that

jS ~r ,t !52E
0

1`

lnS f 0

16 f 0
D J~E,r ,t !dE, ~43!

and Eq.~40! reads
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]S
]t

1divjS52E
0

1` Ja

f 0~E!@16 f 0~E!#

] f 0

]xa dE. ~44!

To calculate the integrand, we rewrite Eq.~3! as

Ji52N~E!Di j ~E!S ] f 0

]xj 1qFj

] f 0

]x0 D , ~45!

and introduceDi0(E)5D0i(E)5qFjD
i j (E) and D00(E)

5qFiqFjD
i j (E) @1#. Given thatJ05qF"J1Jm(E), one ob-

tains

]S
]t

1divjS5E
0

1` N~E!dE

f 0~E!@16 f 0~E!#
Dab~E!

] f 0

]xa

] f 0

]xb

2E
0

1` Jm~E!dE

f 0~E!@16 f 0~E!#

] f 0

]x0 . ~46!

The last term involves the exchange of energy with the m
dium, of which the rate of change of entropy

]Sm

]t
52E

0

1` Jm~E!dE

kT
~47!

should also be taken into account, whence

]S
]t

1divjS1
]Sm

]t
[Ṡ, ~48a!

Ṡ5E
0

1` N~E!dE

f 0~E!@16 f 0~E!# H Dab~E!
] f 0

]xa

] f 0

]xb

1Dm~E!F ] f 0

]x0 1
f 0~16 f 0!

kT G2J . ~48b!

The rate of entropy creationṠ is positive, as expected from
thermodynamics. In this framework it stems from the po
tivity of diffusion tensors (Dab and scalarDm). The second
term in Ṡ vanishes if and only iff 0 is the equilibrium occu-
pancy at the temperatureT of the medium. The first term in
Ṡ is the drift-diffusion contribution to entropy creation. If th
forceqF is switched off, only the spatial components ofDab

and grad f 0 contribute, meaning thatdiffusion increasesS
until the occupation is uniform in space.Drift in the force
field involves the energetic components ofDab and
] f 0 /]x0. If spatial uniformity is reached, and if the field
so weak thatf 0 nears the equilibrium occupancy,] f 0 /]E
'2 f 0(16 f 0)/kT'2d(E2EF) for degenerate fermions
and

Ṡ5N~EF!qFiqFjD
i j ~EF!/kT5qF"j /kT, ~49!

according to Sec. II A. In plain language, entropy is crea
owing to work in the electric force being converted to he
Finally, the absence of a field contribution (]SF /]t) stems
from the entropiless nature of a force field@4#.

If the particle exchanges energy with other systems, o
contributions to the four-currentJa should be added in Eq
-

-

d
.

er

~44!, and other terms inṠ will arise. If energy exchange with
the medium isnot of the thermalizing type, the second ter
in Ṡ is

E
0

1`

f 0~E!@16 f 0~E!#N~E!Dm~E!dE

3F 1

f 0~16 f 0!

] f 0

]x0 1
1

kTG
3F 1

f 0~16 f 0!

] f 0

]x0 1
] ln NDm

]E
2

Wm

Dm
G ,

and the positivity is not obvious. In the case of hot electro
emitting hard phonons of energy\v, the characteristic en
ergy EW of the distribution@2# is large, and

1

f 0~12 f 0!

] f 0

]x0 '2
1

EW

is negligibly negative compared to 1/kT and 2(Wm /Dm)
'1/\v. ConsequentlyṠ.0.

C. Minimal entropy production

It is usually contended that, not far from equilibrium, th
stationary state coincides with the state of minimal entro
production. This can be straightforwardly checked within t
present formalism. Take a homogeneous system interac
with a force field and an energy reservoir, so that the ene
distribution is independent of position. Stationarity is a
tained if JF1Jm50, corresponding to the minimum of

D00~E!S ] f 0

]x0D 2

1Dm~E!F ] f 0

]x0 1
f 0~16 f 0!

kT G2

with respect to variations of the energy gradient] f 0 /]x0.
This minimizes the bracketed term in Eq.~48b!, but not Ṡ
itself with respect to all distributionsf 0 . For definiteness,
consider again nearly free electrons isotropically exchang
acoustic phonons with the lattice at a rate 1/t independent of
momentum. The diffusion coefficients are given by Eq
~33a!–~33b!, and the stationary distribution given by E
~33c! is f 0}exp(2E/kTe), whereTe5(g11)T, in the non-
degenerate limit. Now if we seek for a Gibbs-like distrib
tion f 05exp(2(E2E08)/kT8) minimizing Ṡ under the condi-
tion that the total number of fermions per unit volumen are
conserved, namely

E
0

1`

N~E! f 0~E!dE5n, ~50!

we findT85(g11)1/2T instead ofTe . Therefore there exis
states of lesser entropy production than the steady state.
states are arbitrarily close to equilibrium asg→0 for a van-
ishing applied force. The example shows that the connec
between minimal entropy production and stationarity
voked in near-equilibrium irreversible thermodynamics
not of a general nature.
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V. CONCLUSIONS

This paper has set up a framework for dealing with no
equilibrium one-particle distributions. Specifying nonequ
librium statistics in terms of anenergydistribution function
is possible only if the transport processes involved occur
drift, that is, the phase–space occupation function is alm
the same over a given energy shell. Then, given the en
distribution, a general formula for the spectral partic
current density exists regardless of the quantum nature o
drifting particle. It is the sum of a drift term and a diffusio
term in the energy-position manifold. If the energy distrib
tion is a local-equilibrium one, the linear response theory
recovered. In the opposite case, the energy distribution
be determined from two functions embodying the mean
variance of the instantaneous energy change of the par
.

-

y
st
gy
-
he

-
s
an
d
le

interacting with the surrounding medium. The functions d
pend on the Fermi or Bose nature of the particle. In the c
where the coupling with the medium is able to thermalize
particle, analytical expressions are obtained for the homo
neous, steady-state nonequilibrium occupancy, and a fi
order ordinary differential equation has to be solved in
time-dependent case. A spatio-temporally varying distrib
tion is the solution to a~possibly augmented! Fokker–Planck
equation inE-r space.

The rate of change of entropy associated with energy
change with the surrounding is given by a generalization
the second law of thermodynamics. If the exchange is of
thermalizing type, the total entropy production is a positiv
definite quadratic form ingrad f 0 and ] f 0 /]E. However,
the distribution minimizing entropy production is not, in ge
eral, the steady-state one.
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